
1. Introduction
In the tropics, deep moist convection contributes to precipitation and redistributes the energy and momentum 
within the Earth system (Houze,  2004). Over tropical land in summer monsoon regions, convective rainfall 
peaking in the afternoon is a fundamental mode of precipitation variability (Nesbitt & Zipser, 2003; Yang & 
Slingo, 2001). Organized diurnal convection is critical to short-duration rainfall extremes in these regions and, 
therefore, has been intensively investigated (e.g., P.-J. Chen et al., 2021; X. Chen et al., 2015; Jian et al., 2021; 
Krishna et al., 2021; Romatschke & Houze, 2011; Song & Zhang, 2020). Still, substantial biases exist in simu-
lated diurnal convection in the state-of-the-art global weather and climate models (Baranowski et al., 2019; W.-T. 
Chen et al., 2019; Dirmeyer et al., 2012; Folkins et al., 2014; Kidd et al., 2013; Love et al., 2011; Ma et al., 2021; 
Sato et al., 2009; C.-Y. Su et al., 2019; C.-Y. Su, Wu, et al., 2022; Yuan et al., 2013). Only a minor fraction of 
the latest global storm-resolving models can reasonably reproduce the amplitude and timing of diurnal convec-
tion as inferred from satellite observations. For these, additional analyses suggested it being accomplished for 
incorrect reasons (C.-Y. Su, Chen, et al., 2022). That is, even for high-resolution models in which many critical 
processes and topography can be resolved, the organization of diurnal convective systems and the convective life 
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cycle have to be adequately represented. Physical processes characterizing the interactions between local circu-
lation and the thermodynamic environment of convection, especially those that remain under-resolved by global 
storm-resolving models—including boundary layer turbulence and thermodynamics, local circulation patterns at 
mountain-valley scales, as well as microphysics—are critical. Orographically-locked precipitation, in addition 
to being an important phenomenon on its own, can provide a natural laboratory for studying convection where 
the updrafts and precipitation tend to occur frequently in a particular location. This can facilitate both modeling 
and potentially the design of field campaigns to examine the inflow of environmental air into the region of active 
deep convection.

Taiwan, a tropical island with complex topography, is an optimal region to study diurnal convection over 
complex topography. During summertime, when synoptic-scale weather systems are inactive, rainfall is domi-
nantly produced by diurnal convection (Wang & Chen, 2008). Diurnal convection frequently occurs over specific 
hotspots on the terrain of Taiwan (Huang et al., 2016; Kuo & Wu, 2019; Lin et al., 2011) when the environmental 
conditions favor the development of local circulation (land-sea-mountain-valley breeze). Figure 1 displays the 
conditional probability of summertime diurnal rainfall under weak southwesterly or weak synoptic events clas-
sified by the Taiwan Atmospheric Events Database (S.-H. Su et al., 2018). Notable clusters of hotspots can be 
identified over the northern tip of the Central Mountain Range (magenta box in Figure 1; denoted NCMR here-
after) and the Alishan Mountain Range (southwestern mountains in Taiwan). This prominent feature provides an 
opportunity to investigate the primary physical processes for the evolution of boundary layer and local circulation 
associated with orographically-locked diurnal convection over complex topography.

The supply of moisture and energy from the lower troposphere is crucial to the occurrence and maintenance of 
deep convection (Holloway & Neelin, 2009; Schiro et al., 2016; Tian et al., 2021; Zhang & Klein, 2010). Recent 
observations identified a typical updraft mass flux structure—for both organized and isolated deep convection—
that indicates substantial entrainment of environmental air into the updraft throughout a deep lower-tropospheric 
layer (Savazzi et al., 2021; Schiro et al., 2018). Such a “deep-inflow” structure implies that the lower-tropospheric 
layers approximately contributed equally to the estimated conditional instability, consistent with the weighting 
profile inferred from the observed precipitation-buoyancy relation (Ahmed & Neelin, 2018). The entrainment 
of environmental air can occur via a coherent inflow or small-scale turbulent mixing (Schiro et al., 2018). The 
coherent inflow contribution to the dynamical entrainment can be induced by the secondary circulation of organ-
ized mesoscale convective systems (Nowotarski et al., 2020) or the local circulation along with boundary layer 
development (land-sea-mountain-valley breeze).

In regions with complex topography, the path of the inflow associated with diurnally driven convection 
is often constrained (Barry,  2008; Houze,  2012). Here we hypothesize that the local circulation upon the 
terrain-constrained inflow path can further augment convection development, strengthening convective activity. 
This study aims to quantify the importance of the coherent inflow-layer contribution to the convective updraft for 
orographically-locked diurnal convection in Taiwan. To identify key physical processes, we conduct an ensemble 
of large-eddy simulations (LESs) implemented with realistic, high-resolution topography of Taiwan, subject to 
weak synoptic conditions favorable for the development of diurnal local circulation.

This manuscript is organized as follows. Section  2 reveals the simulation configuration details and how the 
deep-inflow features are identified and analyzed. The analysis for diurnal convection over complex topography 
is presented in Section 3, including the convective updraft structure and the circulation pattern of moist static 
energy (MSE) transport. Section 4 discusses the preliminary observational results of the deep-inflow layer from 
the initial field measurements guided by the analysis of the LESs. The discussion and summary are in Section 5.

2. Methodology
2.1. Model and Simulation Configuration

For this study, we used the vector vorticity equation cloud-resolving model (VVM; Jung & Arakawa, 2008) with 
high-resolution Taiwan topography and land-use types, named TaiwanVVM (Wu et al., 2019). The horizontal 
resolution is 500 m and the domain size is 512 km × 512 km. The length of the simulations is 24 hr, starting 
from 00:00 (i.e., midnight) through 24:00, which is tied to the local insolation cycle. Since the land-atmosphere 
coupling is noted to be an essential component for convective development in TaiwanVVM, the Noah land 
surface model (Noah LSM; F. Chen & Dudhia, 2001; F. Chen et al., 1996) version 3.4.1 is coupled to the model; 
The top soil layers for all land grids are initialized using the daily average soil moisture over the island of 
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Taiwan from the Global Land Data Assimilation System (GLDAS; Rodell et al., 2004) version 2.0. In the VVM 
formulation the pressure gradient force is eliminated, and the vorticity field—driven by horizontal buoyancy 
gradient—directly responds to surface fluxes. This makes TaiwanVVM advantageous to simulate local circula-
tion driven by differential surface heating over complex, steep topography; aerosol effect on diurnal convection 
(Chang et al., 2021); and air pollutant transport affected by lee vortex and boundary layer development (Hsieh 
et al., 2022; Hsu et al., 2023).

The TaiwanVVM LES ensemble analyzed here has been documented in Chang et  al.  (2021). The ensemble 
consists of 30 cases selected to cover the environmental variability of the summertime weak synoptic weather 
regime that favors local circulation development. The observed soundings are simplified as the uniform initial 
condition over the entire domain, commonly used in LESs (e.g., Grabowski et al., 2006), to emphasize the deci-
sive environmental factors that modulate the development of convection, while the ensemble members represent 
the variability of these environmental factors. In such a “semi-realistic” approach, the evolution of local circula-
tion and convection is dominated by interactions among physical processes.

2.2. Deep Convective Columns and Their Convective Parameters

The magenta box in Figure 1 is selected to focus on precipitation hotspots. We impose criteria on the rain rate and 
vertical velocity to ensure the sampling of deep convective columns over precipitation hotspots. Each ensemble 

Figure 1. The topography of Taiwan (gray shading) and conditional probability (colored dots) of summertime diurnal 
rainfall under the weak synoptic or weak southwesterly events. To find the days with a prominent diurnal precipitation 
cycle, only the days with precipitation in the afternoon greater than that in the morning and with the peak rainfall occurring 
in the afternoon are selected. The threshold of the hourly accumulated rainfall is at least 0.5 mm. The precipitation is from 
the Central Weather Bureau hourly rain gauge data from 1993 through 2020 (Data Bank for Atmospheric and Hydrologic 
Research, 2023). For visual clarity, the area of colored dots is proportional to the probability. The magenta box marks the 
northern end of the Central Mountain Range area (NCMR) on which subsequent analyses are focused.
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member's 99th percentile of the rain rate in the NCMR area is defined as the critical rain rate of that simulation. 
The largest contiguous grids that once experienced rainfall greater than the critical rain rate of its simulation 
would be determined as the precipitation hotspot. Inside the precipitation hotspot, atmospheric columns with 
a mean vertical velocity between 3 and 10 km greater than 1 m s −1 are further identified as deep convective 
columns. This criterion upon vertical velocity is less strict than those in Schiro et al. (2018), so the precipitating 
columns with mild low-level downdraft can still be included, preserving the simultaneous existence of precipita-
tion and upward motion in general. In all 30 semi-realistic ensemble members, 25 simulations have wide enough 
deep convective columns in the NCMR area, whose critical rain rates range from 15.16 to 74.99 mm.

Aside from identifying deep convective columns through rain rate and vertical velocity, distinguishing the 
surroundings of deep convective columns further helps us to conceptualize the deep-inflow mixing of deep 
convective columns over complex topography. To diagnose the buoyancy characteristics of deep convective 
columns, we define the environment of the precipitation hotspot. It is a square area centered at the centroid of 
the precipitation hotspot, whose side length is six-fold the effective radius of the precipitation hotspot. Further-
more, we determine the cross-section profile of the deep-inflow by the upstream vector to explore the circulation 
patterns of deep convective columns and their deep-inflow. The upstream vector is defined as the mean integrated 
vapor transport in the environment of the precipitation hotspot below 2 km and within 2 hr before rain initiation.

The buoyancy of deep convective columns can contribute to the tendency of vertical velocity. It is calculated from 
B = g(θv − θv,env)/θv,env, where g is the gravitational acceleration, θv is the virtual potential temperature of deep 
convective columns, and θv,env is the mean virtual potential temperature of the environment. The convective mass 
flux of deep convective columns can be translated from vertical velocity, representing the upward transport of air 
mass. It is calculated from m = ρσw, where ρ is the mean air density of deep convective columns, σ is the fraction 
of deep convective columns covered by updrafts, and w is the mean vertical velocity of deep convective columns.

3. Results
In this section, we examine orographically-locked diurnal convection using the deep-inflow mixing framework 
following Schiro et al. (2018). The convective updraft mass flux profile provides evidence for deep-inflow mixing. 
Thus, the analyses of convective structures are displayed. Since diurnal convection is orographically-locked, 
the deep-inflow can be analyzed in the physical space relative to a specific deep-inflow path. The concept of 
deep-inflow mixing is further extended to characterize the upstream MSE transport via local circulation.

3.1. Convective Structures

Schiro et al. (2018) depicted an increasing convective mass flux with height in the lower troposphere, indicating 
the characteristic of deep-inflow mixing. The buoyancy, vertical velocity, and convective mass flux profiles of 
deep convective columns in all simulations are illustrated in Figures 2a–2c (black lines), representing the convec-
tive structures. The profiles of these deep convective columns have a common shape with substantial variability 
in updraft intensity. The mean buoyancy of deep convective columns is positive between 0.45 and 10.73 km, 
reaching its peak of 2.62 × 10 −2 m s −2 at 5.22 km. Since buoyancy represents the tendency of vertical motion, 
we suppose an accelerated updraft with height inside deep convective columns, and the peak of the mean vertical 
velocity appears at a higher altitude than the mean buoyancy. As expected, the mean vertical velocity of deep 
convective columns increases with height, reaching its peak of 3.80 m s −1 at 6.23 km. The convective mass flux, 
which is related to the mean vertical velocity and the updraft fraction in deep convective columns, also shows 
an increase with height in the lower troposphere. The mean convective mass flux of deep convective columns 
reaches the peak of 1.95 × 10 2 g m −2 s −1 at 5.53 km. Since deep convective columns usually occur over topogra-
phy higher than 1.6 km, the vertical structure at low levels could be influenced by the terrain, showing values of 
approximately zero. The increasing convective mass flux with height in the lower troposphere, providing positive 
buoyancy, indicates a deep layer of environmental air flows into the updraft of deep convective columns.

The deep-inflow mixing reveals the influence of the environment on convection. Thus, the influence function 
is utilized to quantify the contribution from different layers. The formulation of the influence function can be 
approximated by 𝐴𝐴 𝐴𝐴(𝑧𝑧𝐵𝐵, 𝑧𝑧) =

1

𝑚𝑚(𝑧𝑧𝐵𝐵)
𝜕𝜕𝑚𝑚(𝑧𝑧)

𝜕𝜕𝑧𝑧
 (Schiro et al., 2018), which is the vertical rate of change for convective 

mass flux normalized by the convective mass flux of the reference level (zB). This approximation is valid only for 
𝐴𝐴

𝜕𝜕𝜕𝜕(𝑧𝑧)

𝜕𝜕𝑧𝑧
> 0 , provided there is no detrainment. For the height of the maximum convective mass flux (zB = 5.53 km) 
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used as the reference, the influence function has variation in height and peaks around 3.65 km (Figure 2e). For 
a theoretical linear dependence of convective mass flux with height, an approximation of a constant influence 
function 𝐴𝐴 𝐴𝐴 = 𝑧𝑧−1

𝐵𝐵
≃ 0.18  km −1 can be made. This theoretical convective mass flux is displayed by the red line 

in Figure 2c, with the initial level (zi) being the lowest level of continuous increase in buoyancy with height 
(1.95 km). The theoretical convective mass flux corresponds well with the mean convective mass flux of deep 
convective columns, indicating that the approximation is reasonable.

Figure 2d displays the mean MSE of deep convective columns (black line), the mean MSE of upstream (blue line), 
and the theoretical MSE calculated by the constant influence function (red line). The theoretical MSE is calcu-

lated from 𝐴𝐴 MSE =

𝑧𝑧𝐵𝐵

∫
𝑧𝑧𝑖𝑖

MSEenv𝐼𝐼(𝑧𝑧𝐵𝐵, 𝑧𝑧)𝑑𝑑𝑧𝑧 , representing the contribution of upstream MSE transport of each layer 

from the deep-inflow. The theoretical MSE has little difference compared with the mean MSE of deep convective 
columns, indicating that the contribution from the pre-existing local MSE in the deep convective columns is 
limited. Nevertheless, the feature of upstream MSE transport provides sufficient evidence of deep-inflow mixing 
via local circulation in TaiwanVVM simulations.

3.2. Upstream MSE Transport

For diurnal convection developed randomly over great plains (e.g., the Amazon), the inflow can come from all 
directions, making it challenging to clarify the direction of the inflow and illustrate the circulation patterns. Since 
diurnal convection over complex topography is orographically-locked, we can demonstrate the deep-inflow mixing 
features by not only the convective structures but also the circulation patterns of the deep-inflow. Figures 3a–3d 
show the circulation pattern of the deep-inflow of an ensemble member as an example case. In Figure 3a, the blue 

Figure 2. The profiles of (a) buoyancy, (b) vertical velocity, (c) convective mass flux, and (d) moist static energy (MSE) of deep convective columns in NCMR. 
The solid black lines represent the mean values, and the gray shadings are between the 10th and 90th percentile. (e) The influence function calculated by the mean 
convective mass flux following Schiro et al. (2018) focused on the lower troposphere. Note the different y-axis. The red line in (e) is the idealized constant influence 
function with the same value. The red lines in (c) and (d) are the profiles calculated using this constant influence function. The blue line in (d) is the upstream MSE.
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Figure 3. (a) The precipitation hotspot (blue area) and the cross-section line determined by the upstream vector (red line) in 
a case simulation (20050712). The gray shading is the topography. (b) The mean rain rate evolution in the NCMR area of this 
case simulation. The green and red shadings represent the developing and mature stages, respectively. (c), (d) The composite 
cross-section profile of moist static energy (MSE) (color shading) and circulation (streamline) of this case simulation for the 
developing stage and the mature stage. The purple lines represent the top of the inflow layer. (e) The relationship between 
the upstream integrated MSE transport during the developing stage and the mean rain rate in the precipitation hotspot during 
the mature stage (red). The probability density function of the upstream integrated MSE transport during the developing 
stage (blue). (f) The frequency of the deep-inflow in the 25 cases with deep convective columns. The gray shading is the 
topography as in (a).
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area is the precipitation hotspot of this example case, and the red cross-section line, determined by the upstream 
vector defined in Section 2.2, passes through the centroid of the precipitation hotspot, portraying the deep-inflow 
path. Figures 3c and 3d illustrate the composite profile of the cross-section line during the developing stage and 
the mature stage of the example case. The developing stage (green shading period in Figure 3b) is within 2 hr 
before the mean rain rate in the NCMR area surpasses 0.5 mm hr −1, while the mature stage (red shading period in 
Figure 3b) is when deep convective columns appear. During the developing stage, an inflow layer below 2.0 km 
depth transports MSE from the plain toward the mountains. The averaged upstream MSE flux below 2 km is 
5.44 × 10 5 J m −2 s −1. The surface heating and the turbulent mixing in the boundary layer result in the development 
and thickening of the inflow layer. During the mature stage, diurnal convection develops near the center of the 
precipitation hotspot. The depth of the inflow layer is about 2.6 km, accompanied by the averaged upstream MSE 
flux below 2 km of 7.71 × 10 5 J m −2 s −1.

The high MSE transport is the prominent feature of the deep-inflow mixing from the perspective of circulation 
patterns. Figures  3c and  3d reveal that the MSE transport during the developing stage can contribute to the 
growth of diurnal convection, which is further supported by the statistics in Figure 3e. As the upstream integrated 
MSE transport during the developing stage rises from below 6 × 10 8 J m −1 s −1 to exceeding 7 × 10 8 J m −1 s −1, 
the mean rain rate in the precipitation hotspot during the mature stage increases from 14.25 to 19.38 mm hr −1. 
That is, enhanced upstream integrated MSE transport during the developing stage leads to a 36% increment in 
the mean rain rate in the precipitation hotspots during the mature stage. The results highlight the importance of 
non-local dynamical entrainment of the deep-inflow, transporting MSE via local circulation to supply the growth 
of orographically-locked diurnal convection.

4. Field Observation Guided by Simulations
The circulation pattern of the deep-inflow mixing and the accompanied upstream MSE transport can be iden-
tified in the TaiwanVVM simulations. Furthermore, the statistics from the TaiwanVVM semi-realistic LES 
ensembles provide helpful guidance for deploying boundary layer observations. Figure 3f shows the frequency 
of the deep-inflow. Two frequent paths, simplified by the yellow arrows in Figure 4a, are located over the two 
river valleys. At Sunsing (the magenta star in Figure 4a), a location over the foothill with a high frequency of 
the deep-inflow path, we released the Storm Tracker (ST) mini-radiosondes to observe the evolution of the 
deep-inflow. The ST mini-radiosonde is a compact, light-weight, economical, and well-calibrated sensor (Hwang 
et al., 2020), and it has been utilized in the Yilan Experiment of Severe Rainfall (YESR2020) field campaign 

Figure 4. (a) The accumulated rainfall recorded by automatic weather stations (colored dots) during 14:00–16:00 hr Taiwan Standard Time on 26 August 2022. The 
black dots are stations with no recorded rainfall in this period. The gray shading is the topography as in Figure 3a. The yellow arrows represent the frequent paths of the 
deep-inflow identified in Figure 3f. (b) The moist static energy and horizontal wind observed hourly at Sunsing [indicated by the magenta star in (a)] on the same day, 
using the Storm Tracker mini-radiosondes (Hwang et al., 2020). The solid white line signifies the top of the northeasterly layer.
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(S.-H. Su et al., 2022). An observation was conducted on 26 August 2022. This afternoon, Taipingshan Station 
(CWB station number 01U560) in the NCMR area recorded 59.0 mm in 2 hr (Figure 4a). Figure 4b displays 
the evolution of MSE and horizontal wind observed by the ST mini-radiosondes. The depth of the low-level 
northeasterly increased from 09:00 to 15:00 Taiwan Standard Time (TST, UTC+8), revealing the evolution of 
the inflow layer. The MSE in the inflow layer also increased with time, reaching its maximum at 14:00 TST, just 
before the maximum rainfall occurred at Taipingshan Station. The observational evidence demonstrated the high 
MSE transport by the deep-inflow toward the precipitation hotspot.

5. Discussion and Summary
This study focuses on regions with high occurrence of strong convection, that is, precipitation hotspots, over 
mountains under weak synoptic weather regime during summertime in Taiwan. Such a weather regime favors 
the development of local land-sea-mountain-valley-breeze circulation driven by differential surface heating over 
steep topography. A TaiwanVVM LES ensemble is simulated with the realistic, complex topography of Taiwan 
and initiated using a set of radiosonde observations to span the variability of the background environment. In 
this ensemble, through mass continuity, a deep layer of inflow can be inferred from the common mass flux 
structure of strong updrafts—the mass flux increasing gradually with height throughout the lower troposphere—
identified during heavy precipitation over the hotspots. Furthermore, a deep layer (including the boundary layer) 
of coherent inflow air can be directly identified in the simulations with elevated MSE transport along its path. 
The orographically-locked diurnal convection over the hotspot is enhanced by the high upstream MSE transport, 
leading to an averaged 36% increase in rain rate.

The presence of orographically-locked convection provides a unique opportunity for studying convective updrafts 
and precipitation—because the typical location of the updraft is geographically constrained, field measurements 
can be more easily placed to sample the environment likely to influence the convection. A field campaign on 26 
August 2022, guided by the simulations, released the ST mini-radiosondes (Hwang et al., 2020) to quantify the 
upstream environment of the most common deep-inflow path. The initial analysis supports the existence of high 
MSE transport within the inflow layer when organized convection occurs over the region of precipitation hotspot. 
While aspects of this flow may be specific to the orographic conditions, the presence of the deep inflow layer is 
consistent with and reinforces other lines of evidence (Ahmed & Neelin, 2018; Derbyshire et al., 2004; Holloway 
& Neelin, 2009; Houze, 2004, 2018; Nicolas & Boos, 2022; Nowotarski et al., 2020; Schiro et al., 2018) that the 
other properties of deep convection may also be examined in the upcoming field observations motivated by the 
analyses in the present study.

Data Availability Statement
The analyzing codes and post-processing data are available in the online open-access repositories (https://doi.
org/10.6084/m9.figshare.21986564 and https://doi.org/10.6084/m9.figshare.21986900).
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